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ABSTRACT

Recently, Micchelli , Rivlin and Winograd [ i  5 J described a scheme
for interpolating by splines at given data points which , in a certain reason-
able sense, is optimal among all schemes which attempt to recover a func-
tion from its values at those data points . This paper offers a Fortran program
for the calculation of that optimal interpolant. A short derivation of that
recovery scheme is given first , in order to make the paper selfcontained and
also to provide an alternative to the original derivation in [ 1  5] .  For the
latter reason , a derivation of the related envelope construction of ~ aff ney
and Powell [8 ]  is also given. From a computational point of view , these
schemes are special cases of the following computational problem: to
construct an extension with prescribed norm of a linear functional on some
finite dimensional linear subspace to all of ]L

1[a , b J .
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COMPUTATIONAL ASPECTS OF OPTIMAL RECOVERY ~

Carl de Boor

Mathematics Research Center , U. Wisconsin—Madison

610 Walnut St., Madison, WI 53706 USA

1. INTRODUCTION

This paper offers a Fortran program for the calculation of
the optimal recovery scheme of ~icchelli , Rivlin and Winograd [151.
A short derivation of that recovery scheme is given first , in
order to make the paper selfcontained and also to provide an
alternative to the original derivation in [15]. For the latter
reason, a derivation of the related envelope construction of
Caffney and Powell (8] is also given. From a computational point
of view, these schemes are special cases of the following computa-
tional problem : to construc t an extension with prescribed norm
of a linear functional on some finite dimensional linear subspace
to all of ]L

1
[a,bJ .

2. THE OPTIMAL RECOVERY SCHEME OF MICCHELLI, RIVLIN AN!) WIN()CRA D

This scheme concerns the recovery of functions from partial

information about them . Let n > k and let r :— (r~ )~
’ be non—

decreasing , in some interval [a ,b ] ,  with t 
+ , 

all i.
(k) (k—i) (k—l) ~ i k (k)

For f e IL := (g e C [a,b] : g abs. cont., g
C I L } , deflote by f j  the restriction of f to the data point

sequence r , i.e., : (f
1
)~ with

:• ~~~~~~~~ j : j(i) : max (m : T
i

Sponsored by the United States Army under Contract No. DAAG~ 9-7~~-
C-0024.



We call a map s ~~(k) ~ 
~ a rccov~ ry~~ cheme ~~~

with respect to -r provided Sf depends only on 
~J T ’ i.e.,

provided f = implies that Sf Sg. The (possibly

infinite) constant

const5 :~ sup{ II f — Sf 11 / f (k) : f c IL 
(k )

measures the extent to which such a recovery scheme S may fail
to recover some f since it provides the sharp error bound

(1) 1 — Sf~ < const5il f
~~1l all f c

Here and below ,

: ess.sup{~ g(t)1 a < t < b }

A recovery scheme S is optimal if .its const~ is as small

as possible , i.e., if the worst possible error is as small as
possible , as measured by (1). We write

const :~ inf const
T s S

for the best possible constant. Here is a quick lower bound for
that constant. We have

const5 sup sup II g — Sf11 i ll g
(k) 11

f g =f
I I

sup ii g — so il Ill g (k)~
gJ 1~o

sup max {ij  g - so il , ii -g - SO li}Ili g(k)~j

sup I i g il /l i g(k) 11
g

for every recovery scheme S, hence

(2) COfl St
1 

> c(t) := sup II ~lV ll ~~~

2.-



But , actuall y, equality holds here. For the proof , we need the
notion of perfect solines.

A perfect soline s of dec~ree k with (sinmie) knots

~ 
in [a ,b) is any function s o~ the form

s(x) = P(x) + c 

~ 

(_)i f
1
~
1
(x - y)~~~ dy (ç 0 := a, 

~r+l
:= b)

with P € 
~~k 

:= polynomials  of degree < k and c some constant.

In other words, such a function s is any k—th anti—derivative
of an absolutely constant function with r sign changes or jumps
in [a,b]. Their connection with the present topic stems from

Proposition 1 (Karlin [10]). If s is a perfect spline of
degree k with n — k knots then

= inf(iI f
(k)

11 : f C u (k) 
f j  =

This proposition follows directly from the following lemma.

Lemma 1. If h E is such that, for a = <

r b,

> 0 a.e. on (z
1, ~~~~ 

for some C
i
E (—1,11, i=O,...,r

and h 1 — 0 , then r > n  — k. Further, if r < n  — k, hence

r = n — k , then

(3) < 

~i 
< 

~i+k’ !2! ~

Assuming this lemma for the moment , we see that if , in

Proposition 1, we had ii ~~~ 
> f

(k)
11 for some f C with

fj 1  s
~~

, then h := s — f would satisfy the hypotheses of the

lemma for some r < n — k , which would contradict the conclusion
of the lemma.

Proof of Lemma 1: By Rolle’s theorem, there must be points

< tn+l_k

at which vanishes, and for which

-I-



(4) T~~ < t
1 ~ 

1 j+k—l ’ all ~

Then , each interval [
~ , ~ ) contains at most one of the t

since , on each such interval , h is strictly monotone , by
assumption . Therefore , if denotes the number of such

intervals to which t~ belongs , then

n + 1 — k < ~ n
1 

< r + 1

or n — k < r. This also shows that , if n — k = r, then n = 1,
all j, and so

Ci~l 
< t

1 
< ç~ , all i (except that , possibl y ,  

~~ 
=

tn+l k

which , combined with (4) then implies (3). QED.

We also need

Theorem 1 (Karlin [10]). If f ~ IL (k) 
then there exists a

perfect spline of degree k with < n — k knots which agrees
with f at t.

A simple proof can be found in [2].

We are now fu l ly  equipped for the attack on the optimal
recovery scheme. By Karlin ’s theorem, the set

Q : (q : q is a perfect spline of degree k with < n — k
t knots, — O}

is not empty. By Lemma 1, each q € Q \{O} has , in fact , exactl y

n — k knots and does not vanish off -r (since otherwise it would
have n + 1 zeros yet only n — k sign changes in its k—th

derivative, contrary to the lemma). Therefore, if f € and

f j  — 0 and x ~ r , then (f(x)Iq (x))q is a well defined perfect

spline of degree k with n — k knots which agrees with f at
the n points of I and the additional point x, hence,
Proposition 1 implies that

(5) itf~~ H > f(x)/q(x) 
~~ 

q
(k)

It follows that

. .1 . .



(6) supt lf(x) 111~
(k~ II : f € ~~(k) 

~ 
= 0) ~q(x) I / I l  q (k) II

Since the left side is independent of q, this shows that Q is

the span of just one function , say of ~~, normalized to have

• (k)
(0

4-
) = 1

It also shows that

(7) c(i) = II ~1l
This gives a means of computing c(-r), but not quite yet the

equality const = c(-r) nor the optimal recovery scheme. For this,

let 
~~~

... ~~~~ 
be the n — k knots of ~ and consider

$ := splines of order k with simple knots 
~~~~~

.

n C~~~
2
~

~~~ ~
(k—2) : 

~1(~~~
) € 1’k’ all i} 

(F
~O~

a,
~~+ l k =b).

Theorem 2 (Micchelli , Rivlin & Winograd 1 15]). The rule

A A (k
(Sf) = fj and Sf € $‘ all f € IL

defines a map t (read “ess crown(ed)”) on which is

linear and an optima l recovery scheme with respect to r.

Proof. First , we prove that is well defined . Since , by
the lemma , < < 

~i+k’ 
we ask

for matching f
(k l) 

at some point -r
~ 

only when such ~~ / E ,

i.e., when s~~~~~(t ) makes sense for each $ € $. Secondly,
dim $ k + number of polynomia l pieces — 1 = n, therefore S is
well defined if and only if

(8) 1 — 0 and I € $ implies f = 0

For th is, we would like to use inequality (5), but , since $ is

not contained in but only in the larger space

:- 
n

1:;k 
~~~~~~~~~~~~~



we must first extend (5) to such spaces , with the convention that

:= max f
(k)  II for f £ IL 

(k)
(~1, E 1~ 1

)

This requires the following slight strengthening of Lemma 1.

Lemma 1’. If h € L~
1
~ for some a = ... b

—— ~ ,ç — — 0 r+land, for some a {—l ,l},

o(_)ih
(k) 

> o a.e. on 
~~i’~ i+1~ ’ 

i = 0,... ,r

then h1 = 0 implies n — k < r.

Here, we mean by h~
’
~~

1
~~(x) = 0 that ~~~~ (x )h ( k4 ) (x+) < 0,

in case the number x occurs k—fold in r.

Proof. Rolle’s theorem gives again n + I — k distinct

zeros of ~~~~~ which again consists of r + 1 strictly monotone
pieces, but may fail to be continuous across the points 

~~~~~~~~
• • •

~~~~~~~~~

•

But, since h
(k) 

alternates in sign, this latter fault can easily
be remedied by appropriate local linear interpolation across

a small neighborhood of each discontinuity 
~~ 

without dis turbing
the other two properties and now n — k < r follows as before; Q.E.D.

This gives

Proposition 1’. If s is a perfect spline with < n — k
knots , say with knots 

~ 
Cr where r n — k , and of



~~grcc k, ~~~~~
s
~~~ 1i inc~ i 1 ~(k )

11 : 1 € IL,~~~, ~I - r = S I T )

From this we conclude , with ~
j q (1~ J J = 1, that

(5’) ~I 
1

(k)
11 > If(x)/~ (x)l for x I r , f € ~~~~~ f~~ 0

But this implies (8) since 
~ 

0 for f c $, and so shows

that is well defined. Finally, (5’) also imp lies tha t , for
(k)f € I L

- V (f - ~f ) (k)
jj > lf(x) -

or

(9) lf(x) — ~f(x)4 < I~(x) l ~
showing, with (2) and (7) ,  that is an optimal recovery scheme.
This proves Theorem 2.

MRW actually insist that a recovery scheme S ~ap into
hence they are not quite done at this point , since ~ only maps

into ~~~~~~~~~~~~~~~~~~ But , since $ can be viewed as spline functions

of degree k with double knots at the 
~~~~
, we can produce an

element of arbitrarily close to ~f merely by pulling all

these double knots apart ever so slightly. This shows that
inf const — c(r) even if the inf is restricted to S mapping into

(k) S
IL but now the inf is not attained apparently for k >1.

3. THE ENVELOPE CONSTRUCTION

The preceding discussion allows a simple der ivation of sharp
estimates for the value of a function f € at some point x,

given the vector 

~I and a bound L on its k—th derivative on
(a ,bJ, as follows.

We are to ConStru ct the set

:— (f (x )  : I e F}

with

—7 —



F :— {f € L
(k) 

: — f
(k)

fl < L}

for some given ~ and L. If F is not empty , then I is a
closed interval ,

— : [a
~
,b
~
]

say , since F is closed, convex and bounded and [x] : f . f (x)

is a continuous linear functional on ~~~~~ Assume that

:— {f c F fl f (k)
11 < L) �

Then

(10) (a
~
,b
~
) — E x J F °.

Karlin ’s theorem then implies that , for x I

:— {q : q is perfect spline of degree k with < n  — k
knots , — a , q(x) — a }

is not empty. Further , 
~~ 

C F, since, by definition of
there exists f € F with f(x) — a

~ 
while each q £ agrees

with such an f at the n + k + 1 points r - and x, theref ore
~~q

(k)~~< fi f (k)~~<~~ by the proposition. On the other hand ,

n F° — #, since, if q € n F°, then a — q(x) € (a
~
,b) ,

by (10), a contradiction.

It follows that

for all y, a~ < q(y) < b
7

But , for any g € F°, h : g — q has < n — k sign changes in its
k— th derivative and vanishes at t, therefore q has exact ly
n — k knots and h does not vanish off t, by Lemma 1. Hence ,
if rj+],...,tl.~~ are all the points of t between x and y I t,

then

(_)J (g(y) — q(y))  > 0

This shows that

(a ~ even~q(y) — <
Lb”i if the interval between x and y contains an 

(Odd)

—8—



number of points of t . It follows that Q contains exactly one

function and that this function supp lies half of the entire
boundary of

(11) ((x ,f(x)) : x ~: [a,b], f € F }

the other half being supplied by the perfect sp line p of degree
k with n—k knots for which = x and p(x) = b .

We note the curious corollary that the perfect spline s of
Karlin ’s theorem is unique if there exists g which agrees with

f at all points of I but one and for which II ~~~~~ < ~ (k)~ 1 , i.e.,
if at least one of the interpolation constraints is active . Put
differently, it says that if there are two different perfect
s~ lines s, s of degree k with < n - k knots for which

s~ = i and which agree at some x / t , then

= ~(k)
1~ = La := min {Ij f

(k)
11 : f € TL~~~~,

Let now q be the half of the envelope of (11) with

= L, and let p be the one with ~
(k)

(0+) = —L. Gaffney
and Powell [8] choose

SL
ct := (p + q ) /2

as a good interpolant , its graph being clearly the center of (11).
Since p and q are uniquely defined for L > L by the requirement

that they are perfect splines of degree k with n — k knots , equal
to a at t and to a , resp. b at x, they are necessarily continuous

functions of L and a in that range. In particular , with q =:q~~~ 1

we have = L~1~~/~ and 
-
~ q1 0 

= as L -
~ ~~ , and ,

similarly, 
~L a/L 

-
~ —q as L -

~~ . This shows that , with

U
1 

< ... < Un_k the knots of q and v
1 

< ... the knots of p.

u rn u lim E
~i, 

i = I ,... ,n — k

In particular , for large enough L, the sequence

0 
~0+’~ l— ’~ l+ ’~ 

.. ‘~n—k— ’S~—k+’~n—k+l— 
= 1

with

:— m in {u 11 v1
}, 

~~~ 
:= max{u1,v1}



is nond~-c rea~;1ng and

(k) 1 ~ °~~
(S

1
a) = l~±2I . on (~ ,~ )

hence

(S~a)~~~~~1 
2L~I U - V~~I J ~~~~0

This shows that S
L
a converges to an element of $, while

S a a for all L
L I

th e r e f o r e , S
L
ct converges to the optimal interpolant for the data.

It was in this way that Gaffney and Powell [8] constructed ,
quite independentl y from Micchelli, Rivlin and,~Winograd [153, the
same optimal recovery or interpolation scheme S.

The problem of constructing the set I was posed originally
in the basic paper by Galomb and Weinberger [9], althoug h they
gave de tailed a tten tion to such pr oblems only when the (semi ) nor r n
involved comes from an inner product. ‘licchelli and Miranker [14]
solved the problem posed at the beginning of this section in the
sense that they correctly described the boundary of (11) as being
given by just two perfect splines of degree k, each with n — k
knots, and with their k—th derivative equal to L in absolute value .
In fac t , Micchelli and Miranker consider the slightly more general

situa tion where f (k) is only known to map [a,b] into some interval
(m ,M]. They state that these matters could be proved along the
lines used by Burchard [6] to solve a related restricted moment
problem and refer specificall y to Karlin and Studden [11 , VIII , ~31
for requisi te facts concerning principal representations of interior
points of moment spaces. Of course , these fac ts go back to
Krein [12]. Quite independentl y ,  C,affney and Powell [8] also
solved this problem , with the proofs in Gaffney ’s thesis based on
Chebyshev type inequalities as found in Karlin and Studden [11 ,
V I I I , §8] and adap ted by him to weak Chebyshev systems .

4. THE CONSTRUCTION OF NORM PRESERVING EXTENS IONS TO ALL OF IL
1

Both the optima l recovery scheme of Section 2 and the
envelope of Section 3 require the cons tr u c t i o n  of an absolu te ly
constant function h with no more than a specified number of jumps

—1 ~) —



which proviJ s an in tegral  representat ion of a linear func t iona l
given on a lIn .ir space of spline functions.

in the optimal recovery , we are to construct a perfect spline

of degree k wi th n — k knots and with II = 1 which vanishes
at the given n-point sequence t. Let (M

1
)~ be the sequence of

B—splines of order k with knot sequence t , each normalized to have
unit integral , i.e. ,

(12) M~(x) := M i k t
(x) := kIT .,... 

~
T
i+k J ~~ 

—

with [i~~~,. . . ~
1i+k lf the k—th divided difference of the function

f at the points ~~~~~ t1+k~ 
Then, from Taylor ’s expansion with

integral remainder ,

(t i , . . .  ,Ti+kJf — f k
M (x)f (x)dx/k! for all f c

I
i

n-kThe points F; = (F;1
)
1 are therefore characterized by the require-

men t that the function

n-k
h~ (x) :— sign TT (x — F;~) = ±s~~~ (x)

i=l

be orthogonal to each of the n — k functions M1,.. . ,Mfl.~k
.

Before considering the computational details of determining
F; from this orthogonality condition , I want to comment on the
fact that this is a problem of representing or extending a - linear
functional on some subspace of IL

1 
and is therefore closely related

to the problem of computing the norm of a linear functional on some
subspace of IL

1
. This is also explored in a for thcoming paper by

Mi cchelli [13].

Indeed , if T Is a linear subspace of IL 1 of dimension
n + 1 — k, and A is a linear func tional on we migh t ask for F;
and a so that

(13) a I h F;g — Ag for all g € T

But then , in par ticular , h F; is or thogonal to ker A , a subspace of
dimension n — k. Conversely, if we have already found h1 or tho-
gonal to ker A then there will be exactly one a so tha t

—1 1—



represen ts A on T in the sense of (13), unless h~ is even or tho-
gonal to all of T. But this latter event cannot happen in case T
is weak Chebyshev since hF; has only n — k jumps.

It is clear that any such representation hF; for A produces

an upper bound for the norm of A. In fact , JJ A f i  — J a J  in case T
is weak Chebyshev . This is actually how I became interested two
years ago in the numerical cons truction of represen ters of linear
functionals [3], [4]. I was interested in computing, or at least
closely estimating , the norm of certain linea r functionals on
cer tain spline subspaces in IL 1. In a way, this is a trivial

problem, viz, the maximization of a linear function over a finite
dimensional compact convex set, and there was the feeling that
there ought to be special methods available . Perhaps some reader
can steer me towards such methods. I found, for the particular
cases of concern to me in which T was always weak Chebyshev ,
nothing more effective for calculating fl )~j

~ 
than to construct

such a representation (13).

Finally, the envelope construction corresponds to the slightly
different situation where dim T n — k, A e T’ and a with

A ll  is prescribed and one seeks F; so that again (13) holds.
We have nov one less condition to satisf y but also one less para-
meter to do it with.

5. CONSTRUCTION OF THE KNOTS FOR THE OPTD (AL RECOVERY SCHEME

As we saw in the preceding section, the knots F; — (F;i
)~
_k

for the optimal recovery scheme are the solution to the following

problem. We are given (r
1)~ 

nondecreasing, with < ~~~~ all i ,

and n > k, and wish to construct < ~•• < with

r : - n - k + l

and with — a :— 11, 
~~ 

— b :— so that

r F;
(14) 

~ 
8~ I ~ k 

— 0, i — 1,...,n — k
j—l F;j_l

while also

— 12—



4,
Extend t by

I = : t  I
n n+l n+2 : =: Tn+k

Then one verifies easily that

xf M1 k 
= 

~ 
Nm k+l (X) for x a

a ‘ m>i

with
Tm+k+1 -Nm k+1 := 

k + i. Mm k+l~ 
all in

Therefore, (14) is equivalent to

r

~
j l  m>i m ,k+l~~j~ 

— N
~ ,k+l (F;~ _l ))  — 0, — 1,... ,n — k

or, on subtracting equation 1 from equation I — 1 for i 2,... ,n—k ,
r

B (Nj k÷l(F;
j

) — N
i k+l (F;j.l

))  = 0, i 1,... ,n — k — 1
j=l

r

~ B 
~ 

(N
m k÷l(F;

j
) — N

m,k+l (F;j_l )) = 0
j=1 m>n—k

Using the fact that N k+l~~o~ 
= 0 for in ~ 1, this can also be

written

n—k

~ ( B — B  )N (F ; )= — B N (F;)j j+l i,k+l j r i ,k+l r i = l ,...,n — k — l
i—i

n-k

~ (B~~— B
1 

) ~ N (F ; )— — B  ~ N
j l  m>n-k m>n-k ,k+l~~r~+1 m,k+l j r in

Since N1 k+l~~ 
) — 0 for i < n — k, while ~ N (F; ) 1,

m,k+l r
the right side becomes simply (0,...

Choose now B
r 

— —l to make things definite. Then B~ 
— (_)~~

i_1

n-k-j
— (—) by (15), and (19) and (15) are seen to be equivalent to

(16) F(F;) — 0

n-k n-kwith F : IR -. R given by



Si , i ’~~n — k

( 17) F( F )
1 

:

L ~ a~ , i = n _ k
m n—k

where

(18) a~ := (
~ 

Ni k+1(~j): : ‘: “~ - 1
We solve (16) by Newton ’s method . From the current guess ~~~, we
compute a new guess = F; + SF;, with ~~ the solution to the
linear system

(19) F ’(F;)iSF; = —F(F;)

Since N~ k+1 
= M

i k  
— M

i+l,k, 
addition of equation I to equation

1—1 , 1 = n — k,.. .,2, in (19) produces the equivalent linear system

n-k n-l . n
~ (M

m k
_M
~~l k )(F;

~
) (—)~~~~~rSF;

3 
= — a , i 1 ,... ,n—k.

j=1 m=i m=i

But, since 
~~

(M
m k  

- H
~~l,k

)(t) = H
i k

(t) - M
n,k

(t) - Ai,k(t)

for t < b , this shows that (19) is equivalent to the linear system

(20) Cx = d

with

(21) ~~ fl-k-i~ F; = X

1
, d

i
=(
~~~

_a
m
)(r

i+k - t.)Ik , c
ii 

- Njk (F;j
)

1,1 = 1,... ,n — k.

The matrix C is totall y positiv e and (2k — 1)—banded , hence can be
stored in 2k — 1 bands of leng th n — k each , and can be factored
cheaply and reliably within these bands by Gauss elimination with—
out pivoting (see [5]).

The iteration is carried out in the program SPLOPT below,
starting with the initial guess

(22) F;1 
— (ti+i 

+ ••~~~~• + Ti+k 1)/(k 
— 1), 1 — l,...,n — k



A first version of the program was equipped to carry out Modified
Newton it.~ration : (.~~ is computed as the first vector in the
sequence

~ 
+ 2 h

6F;, h = 0 ,1,2,...

for which F(F; + 2 ’~oOJ ) 2 F(F;)~ J 
~ 

But , in all examples

tried , the initial guess (22) was apparently sufficiently close to
the solution to have always h 0, i.e., II F(~ + ~ )iI 2 < IIF(OIl 

~In fact , the termination criterion

—6
~F; l I < 10 (t — r

l
)/(fl — k)

was usually reached in three or four clearly quadraticall y converg-
ing iterations. For this reason , the program SPLOPT below carries
out simple Newton iteration . It would be nice to prove that Newton
Iteration , s ta r t ing  from (22), necessarily converges. But , such a
proof would necessarily have to be in control of the norm of the
inverse of the matrix F’(F;), hence in control of the norm of the
inverse.of C = (N~ (F;.)) as a function of F;. Good estimates for

have been searched for in the past by some who were

interested in bounding (the error in) spline interpolation , but
without much success. E.g., the simple conjecture that , for the

Initial guess (22), (N~ (F;.))~~~fl 
~ . 

< const~ independent of ~ has

been proved so far only for k < 4.

SUBROUTINE SPLOPT ( TAU, N~~ K, SCRTCH. T, IFLAG
COMPUT ES THE Nfl~ TS I FOR THE OPTIMAL F~ECOV 1RY SCHEM E OF ORr’FR N
C FOR DAT A AT TAU ~~~~~~~~~~~ N • TA U MUST BE STRICTLY INCF~EA S INO .
C SEE TEXT FOR !‘EFINtTIO~4 OF VARIABLES ANt’ METHOD USED.
C IFLAG = 1 OR 2 r’EF-ENFIING ON WHETHER OR NOT I WAS CO PIST RUCT ED .
C DIMENSIO N SC R T C H ( ( N — N ) * ( 2 * N + 3 ) +~~T h+3) ,  T ( N4N)

DIMENSION TAUIN ) ~SCR1CH C1) ,T(1)
DATA NEWTMX~ TOLRTE / 10~~.OOOOOi/NMP( • N-K

IF (NMK ) 1,56,2
I PRINT 601 ~N,K

601 FORMAT (13H ARGUMENT N ~I4,29H IN SPLOPT IS LESS THAN N = .13)
GO TO 999

2 IF (K .OT. 2) 00 TO 3
PRINT 602~~K

602 FORMAT(13H ARGUMENT K ~I3,27H IN SPLOPT IS LESS THAN 3)
00 TO 999

3 NMKM 1 • NMK — I
FLOATI( = K

KPN - k+K
KP1 K+ i
ICPKP1 K+KPI
Kill • K — I

KPKM1 K+Ml 1
KPN K+N
SIGNST -1.
IF (NMIc .GT. (NIIK/2)*2) SIONSI I.



C SC~~TC H 1) = 1(~l l — 1 ~~T EN1 ’ E t ’ ( I ’ , J :1, , . . , N +X 4 K
NX • Nf N F I r 1

C SCRTCI 1 (14HX ) ‘ X 1 1>.I= O , . .. ,N —N+2
NA N X + NMN + 1

C SCRTCH (14t4A ) - — A C t ) ,  1 1,. ..,N

NI’ NA + N
C SCRICII (HtJt ’) — X(I) OR f’CI), I=l~~....N—KN V :  N t i + N M N
C SC RTC~1( I~~C Jv )  ‘- V N I N X C T ) ~~I~~1~~. . . ,K41

NC NV + P - F l
C S C R T C H ( ( J — l ) * ~M-I i+I + NC) = CHAT (I,J),I=1,...,N—K ,J—1 ,...,2*K—I

L~~NGCM N M N *I ’ .FNPI L
C EXTENt ’  TA U TO A NNOT SEUUCNCE ANt’ STORE IN SC RTCH.

I’D 5 J= 1.N
SCRTCH (J) TAIJ I, ’

5 SCC~TC H( NFN+J ) = TAU(N)
DO A J 1 ~~N

6 ~C RT C H( N+ ) )  TAU~ J )
C F I R ST  GUESS FOR SC RTC I4 (.+NX) = XI

SCRTCHCNX ) IAU 1
SC RTC I I ( NMN414N X )  = TAUCN)
DO 10 J r l ,HM Is

SUM = 0.
DO 9 L=1,KMI

9 SUM = SUM + TALJ (J+L )
10 SC RTCH ( J+ NX )  = SUM/ ISMt

C LAST ENTRY OF SCRTCH C.+NA) = — A IS ALWAYS ...
RC F.IC H(N+NA)

C STAR T N~ UT ON IT ERATION .
NFWTO U = 1
TOE = TOLRTE* (TAU(N) — TA U(1))/ N?IN

C ST~~R1 NEWTON STEP
CCtIPUTF TI lE 7N-i FANGS O~ THE MATRiX C AMP STORE iN SCRTC H( .#NC),
C f~Nt’ COM~ ’JT E TFIF VECTOR SC RT CH( .+NA ) — A .

20 h O  ‘~~ I = I t L E P 4 G C H
21 SCRTCH (I+NC) 0.

[‘0 22 I=2vN
2 SCRTC H (I— l+P4~~) = 0.

SIGN = SIONSI
h EFT = NFl
DO 28 J=1iNMK

X IJ = SCRTCH~~J +NX )
23 IF (XIJ •LT.  SC RTCH ( ILEFT+ 1) )  GO TO 25

ILEFT = h EFT + 1
IF (IL EFT .LT.  K F N)  GO TO 23
h EFT • h EFT -

25 CALL BS PLV P1( SC RT CH ,Ps ,1 ,X IJ , IL EFT ,S C RTCH ( 1+ NV))
II’ • PIAXOCO,ILEFT—NPN )
ZNI’EX • NC+(J—It l+ NM1)* NMN+ ID
u MAX • MINOth,NMN-It’)
h u N  = I - MTNO (O,ILEFI-KPK)
DO 26 LL~ LLI1IN~ L L M A X

INI’EX • INDEX — NMKM1
26 SCRTCH(!N[’CX) = SCRICH(LL+H’)

CALL P~ PLVN (SCRICH,KF1,2,XIJ,ILEFT,SCRTCH (1+NV ))
ID MAxo (o,ILEFT— ’.F-KrL)
ILPIIN = 1 - PIINOCO,ILEFT—KPKPI)
DO 27 Lt =LL MIN,NP1

ID • ID 4 1
27 SCRTCH (Iti4NA ) • SCRTCH(IV+N~~) -
20 SZOPI — -SIGN

— 1 ‘•‘



CA SE l:AUIES (’ • ~f~~TC SI  S i  +NC ) ,Nfl~ ,NMi~ ,~~ I S~~.1 , N, ~J L .~~ >
(~D IC) (4~~,44)~~IFt A G

44 F R I NS  644
644 rci rpi ~T C : :-H C i~ sr~ OFT IS NOT IP4Vr S:T IDLE)

RU I LIRN
COMF U I l  ~C RTCH ( . +NT . ) — I’ FROM SCF~TCH ( . 4 N A ) — A

45 (10 46 I ~ .7.—1
46 S C R T C H ( 1 4 : S A )  SCRICH( I — I 4 N A ) + S CR TC H( I4 NA )

(10 49 I~~l’NHi~49 CCR1LH ( ‘4U11 ) E~CF~T C I 4 C T + N A ) * ( T A t I ( I 4 N ) — T A U ( I ) ) / f L O A T N
CfllIFL’ rr cCI .T r U • +N(’ ) = X

CAl L 1~~~~U l ( E r S T C I - S ( l 4 N C ) , N M N , NM N , N F b M 1 , K , S C R T C H( 1 4 N 1 I ) )
COPIF ’ llC SC~~T C H C .4NI’ )  = CHANGE IN X l  • ho l i ry ,  IF UECP S S A E Y ,  TO
C If ~ VTh~ ‘J~ W XI F ROM MOVING MORE T HAN 1/3 OF T IlE WAY TO ITS
C NE. 11 555  US E, . T HI N c n n  TO X I TO OL’TAIN NEW XI IN SCRTCII( • + NX)

IL-I P1~~X 0.
S IGN SIG NST
1.0 53 l=l,IJPTh

[‘EL SIGN *SC RTCH ( I+ Nh’ )
[SULIIAX =

IF (I’EL .61. 0.) 60 10 51
(‘EL AMAXIU i F L ,C SC RT C N( I—1-PN X ) - SC RTC H( I+N X ) ) / 3 . )

G O TO 52
51 I’El z A M I N l ( t ’ E L , ( S C RT C H ( I+ l 4 NX )— S C R TC H( I~~N X) )/ 3 .)
57 SIC’P’ =

53 S C R T C S I C T + N x )  S C R T C H C T + N X )  + DEL
CALL IT A [‘AX PS CASE CHANGE iN XI W A S SMALL ENOUGH OR TOO MANY
C ST EF~ W IEF TANE~5 .

IF ([u MAX .LT. 101) GO TO 54
NEWTO N ‘- NEWTO N + 1
IF ( NEW TO N .LE. NEWTMX ) GO 10 20
1-RINT 6~~3,N[W TI ’X

6~~ FCSM,~T (33LI NO COI4VE1~GEPICE IN SPLOF T AFTER vI 3 ,  14H NEWTON S I E F S .)
54 !iO 55
~~ T(~~4I) = SC STCH ( I+ NX )
~,6 DC 57 I~~l .N

7 ( i )  = T A U ( l )
¶7 T ( t I i t )  - T AL J ’ N)

RETURN
999 I~~t A(’, 2

RETURN
END



The subroutine SPLOPT has in~~~t TAU ( i ) = t
1
, I = 1,... ,n ,

assumed to be nondecreasing and to satisf y i~~ ~ 
all I , the

Integer N = n and the desired order k in K. The routine needs ~-i

work array SCRTCII , of size :. (n — k) (2k + 3) + 5k + 3; n(2k + 3)
is more than enough . The routine has output T(i) =

I = 1,... ,n + k, the knot seq uence for  the op t imal re covery schome ,
in case IFLAG = 1. For IFLAG = 2, something went wrong.

The routine uses the subroutine BSPLVN for the evaluation of
all B— sp lines of a given order on a given knot sequence which do
not vanish at a given point. This routine , and o thers for  de a l i n g
comptit ationallv with splines and B—sp lines , can be found in [1].
For comp le teness , we also lis t here the subroutines BANFAC and
BANSLI B , used in SPLOPT for the solution of the banded system (20).

SUI.ROU1’Il’[ BANFAC C A ,  NROW ~ N ,  HDIAG, llIt’t’LE, IFLAG )

f ’I P I U N S 1 0 N  I 4 ( N S ’) W, N I J I A G)
IFLAG I
ILO = MIDDLE — 1
IF (110) - 999,10,19

10 [‘0 11 I=1 ,N
IF ( AC I v 1 ) )  1l,999~~11

11 CONTINUE
RETURN

19 IHI = ND IA G - MIt’t’LE
IF (IHI) 999,20v29

20 [‘(1 75 I=1~~P4
IF (A ( J , t 1 I [ ’ I ’L I ) )  21t999~2I

21 JM AX = I1TN0(ILO ~~N-I )
IF (J FIAX) 25,25~22

22 1(0 23 J=l~~JMAX
23 AC I+J~ MIti fsLE—J ) = AC I+J ,M I [’h’LE—J)/A ( I ,MIDDLE)
25 CONTINUE

RETURN
29 [‘0 50 I= 1~~N

[‘lAG A (I,Slrr’r’LE)
IF ([‘lAG ) 31,999,31

31 JMAX r MT P 1 O ( ILO , N— I )
IF (JMA X) 50,50,37

32 NMAX = MINO( IHI,N-I)
[‘0 33 J= 1 ,JM A X

IPJ = I+ J

PIMJ MI! ’DLC-J
A ( I F J , M M . J )  •- A (IPJ,MMJ)/[’IAG
DO 31 N-1,NM.1X

33 A (IPJ,PIMJII\ ) = A ( I FJ , MM J+ N )  — A (IPJ,MMj)*A (I,MII’[’LEth)
50 CONTINUE

RE Tu RN
999 IFLAG 7

RETURN
END.
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BANFAC factors an N x N band matrix C whose NDIAG bands are con-
tained in the columns of the NROW NDIAG array A , with the MIDDLE
column containing the main diagonal of C. It uses Gauss elimina-
tion without pivoting and stores the factors in A.

SLi}’POUTINE P ANSUB C A v  NR0W ~ N~ NIIIAG, MIDDLE, F’
I’ IMCNSION A NROW ,rl I’ IAG) ,E’ (N)
IF (N .Eil. 1) 60 TO 21
110 = MIDDLE — I
IF CIL O ) 21 ,21 ,11

11 [‘0 19 I=2?N
JMAX = MINO(I- 1,ILO)
DO 19 J=1 ,JPIAX

19 8(I ) = BC !) — B (I—J)*A (I,M It’t’LE—J )
C

21 I N
1H = NI1IAG-MI1( E’LE
DC, 29 II= 1 ,N

JMAX = PIIN OCN -I ,IH I )
IF (JMAX ) 28,28,22

22 [‘0 25 J=1 ,JMA X
25 8 (I) = R U )  — B (I+J)*A (I ,MIDDLE+J)
28 BC!) = BCI )/A C I ,M It ’I’LE )
29 1 = 1 — i

• END

• BANSUB then uses the factorization of C into the product of a
lower and an upper triangular matrix computed in BANFAC to solve
the equation Cx = b for given b (input in B) by forward and back
substitution . The solution x is contained In B, on output.

6. CONSTRUCTION OF THE OPTIMAL INTERPOLANT

With the break points 
~l 

< < 
~~~~~ 

for the optimal inter—

polant ~f determined from T in SPLOPT, it remains to compute ~f.
This we propose to do by determining its B—spline coefficients.

SPLOPT has produced the knot sequence t (t 1)r~, with
t
i 

— • — t~ ti~ t
j~•4•j 

— E~~, I 
— 1,... ,n —

t ... t Tn+i n+k n

Let (N
1
)~ be the corresponding sequence of normalized B—spli nes

of order k , i.e.,

N1(x) :— Nj k t (x ) :— (tj+k
_ t
j)[tj,...,tj+k](.

_x)
~~
’, all i.
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Then , according to Cutry & Schoenberg (71, every p itcewise poly-
nomial function of order k on [a,bJ := [T i, T J ,  with k — 2

continuous derivatives and break points 
~~~~~

,.. •‘
~~~k ’ i.e., every

spline of order k on (a ,bI with knot sequence t , has a unique
representation as a linear combination of the n functions
N ,... ,N . Therefore
1 n

= 

i=l 
a
1
N
1

with a = (aj)? the solution of the linear system

(23) ~ N~ (r 1)a. 
= f(t

1), ij=l

In case r is strictly increasing, — the only case considered here ,—
Lemma 1 imp lIes that t

1 
< t~ < t~44~, 

all i, which , together with
the fact that N~ vanishes outside the interval [tj~

t
j+k]. 

all j,

shows that the coefficient matrix of (23) is 2k — 1 banded. Since
the coefficient matrix is also totally positive , we can therefore
(see [5]) solve (23) by Gauss elimination without pivoting and
within the 2k — 1 bands required for the storage of the nonzero
entries of the matrix. •The following subroutine SPLINT generates
the linear system (23), given on input the arrays TAU(I) =
FTAU (i) = f ( r

1
) ,  I = 1,... ,N, T(i) = t~~, I = 1,... ,N + K and the

numbers N and K. The system is then solved , using BANFAC and
BANSUB given in Section 5, and using a working array Q, of size
N(2K — 1). The output consists of the B—coefficients

= BCOEF (I ) ,  i = 1,... ,N, in case IFLAG = 1. If IFLAG = 2, then

the linear system (23) was not invertible.

—Zn -



SL’FLI)U TI N; ~;J 1 1 H T C I A U, F TA I l ,  T p N~ l~ , U, [‘CUE I, I EL AG
C S~ L I Ni FLo[’ t IL :~ S THE: F S IL  INE COIFF • S I COCF OF 1 iti: 511] HF or ORI’iF~
C K W i l l i  NND1S T C I ) ,  1:-i,..,, N 4 N , W h iCh lA NES (IN lhIF~ VALUE
C FTA U (1) A t TAU (1), 1=1 ,..., N
C TAU (S ASSIFI ’ (i TO BE ST F~ICTLY INCREAS ING.
C SEE T EX T  FO1~ I,! c C N I E T I O N  OF VARIA BLES AW L’ METHOI’ .
C I’IMEN~~

] (
~N T ( U I k )  , O ( N , 2 * N— 1)

[‘IIIE NSION T A r S ( N ) ,  FT A U ( N ) c  T ( 1) ,  Q ( N , 1) ,  BCDEF(N)
NFl = N + 1
KFNH1 = 2* ls  — 1
I L E F T  = K
1,0 30 I=1,N

TAUI TAL )(I)
I t F 1 M X  M I NOC I4N~ NF1)
110 13 J=1~~NF KM1

13 0( I,J) 0.
h EFT = MAXO (ILEFT~~I)
IF (TAO] .LT. TCILEFT)) 60 TO 998

15 IF CTAUI .LT. T (ILEFT+1 )) GO TO 16
h EFT ~- h EFT + 1
IF ( ILEFT .LT. ILFIMX) GO TO 15

ILEFT = ILEFT — 1
ir CTAU I  .GT.  T ( I L E F T + 1) )  GO TO 998

16 CALL BSFLVN ( T , f ’ , 1, TAUT ,  T LEFT, F’COEF )
C NOTE THAT E’COEF IS USED HERE FOR TEMF .STORAGE .

L = ILEFT — I
[‘0 30 J=1~~K

L = 1+1
30 O ( I p L )  = £‘CDEFCJ)

NF 2MK N+2-K
CALL BAN FAC C 0, N, N,  K FKM 1 , N , IFLAG

GO TO (40 r999) ,  IFLAG
40 [‘0 41 I l cN
41 BCO E F ( I)  = FTA U( I)

CALL BANSUB C C), N, N, NPNMI , ic, BCOEF )
RETURN

998 IFLAG = 2
999 PRINT 699
699 FO Rf I AT C4 1F f  LINEAR SYSTEM IN SPLINT NOT INVERTIBLE)

RETURN
ENr ’

Note that [1] contains programs w itch might facilitate sub-
sequent use of the optimal interpolant determined in this way
via SPLOPT and SPLINT.

Finally, the linear system (23) can be genera ted in O( nk2)
operations and , because of the band structure , can be solved in
O(nk) operations. The linear system (20), to be generated and
iolved at each Newton step for finding ~, is of similar nature
(with n - k rather than n equations and a coefficient matrix which
is the transposed of the kind of matrix appearing in (23)) hence
requires a similar effort for its construc tion and solution ..
Therefore, if it takes indeed only three to four Newton iterations
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to find ~ to s u f f i ci en t accu racy ,  then i t takes only four to five
times ,is much work to construct the optimal lnterpolant rather
th an  any spi inc i n c t r p o l a n t  to the same data .  A]so , the to ta l
effort is only O (nk 2) which , f or large ii , comparc s ve ry f av orably
with such Interpo lation schemc~; as polynomial interpolation which
takes O(n2) operations , or more general schemes which take as
much as 0(n3) operations .
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